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the Building Code Subcommittees on Prestressed Concrete and Code Reorganization. 
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358 on Transit Guideways, and ACI-ASCE Committee 423 on Prestressed Concrete. 
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Concrete Institute (ACI) Building Code Subcommittee 318-D. His pioneering work on 

high-strength concrete has been widely recognized. He was awarded the ACI Wason 

Medal for materials research in 1974, the ACI Wason Medal for best technical paper 

in 1986 and 1987, and the ACI Structural Research Award in 1993. Professor Nilson 

was an Honorary Member of ACI and a Fellow in the American Society of Civil 
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Cornell in 1956, and the Ph.D. from the University of California at Berkeley in 1967.  
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xii

  The fifteenth edition of  Design of Concrete Structures  continues the dual objectives of 

establishing a firm understanding of the behavior of structural concrete and of devel-

oping proficiency in the methods of design practice. It is generally recognized that 

mere training in special design skills and codified procedures is inadequate for a suc-

cessful career in professional practice. As new research becomes available and new 

design methods are introduced, these procedures are subject to frequent changes. To 

understand and keep abreast of these rapid developments and to engage safely in inno-

vative design, the engineer needs a thorough grounding in the fundamental perfor-

mance of concrete and steel as structural materials and in the behavior of reinforced 

concrete members and structures. At the same time, the main business of the structural 

engineer is to design structures safely, economically, and efficiently. Consequently, 

with this basic understanding as a firm foundation, familiarity with current design 

procedures is essential. This edition, like the preceding ones, addresses both needs. 

 The text presents the basic mechanics of structural concrete and methods for the 

design of individual members subjected to bending, shear, torsion, and axial forces. It 

additionally addresses in detail applications of the various types of structural  members 

and systems, including an extensive presentation of slabs, beams, columns, walls, 

footings, retaining walls, and the integration of building systems. 

 The 2014 ACI Building Code, which governs design practice in most of the 

United States and serves as a model code in many other countries, is significantly 

reorganized from previous editions and now focuses on member design and ease of 

access to code provisions. Strut-and-tie methods for design and anchoring to concrete 

have been moved from the appendixes into the body of the Code. The Code emphasis 

on member design reinforces the importance of understanding basic behavior. 

 To meet the challenges of a revised building Code and the objectives listed 

above, this edition is revised as follows:

    • Every chapter is updated to account for the reorganization of the 2014 Ameri-

can Concrete Institute Building Code.  

   • The opening chapters explore the roles of design theory, codes, and practice.  

   • The process of developing building design and the connection between the 

chapters in the text and the ACI Code is added.  

   • A new chapter on anchoring to concrete is included.  

   • A chapter on walls is added, doubling the coverage and adding design 

 examples.  

   • Diaphragms are included for the f rst time.  

   • Coverage of seismic design is updated.  
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   • In addition to changes in the ACI Code, the text also includes the modif ed 

compression f eld theory method of shear design presented in the 2012 edition 

of the American Association of State Highway and Transportation Off cials 

(AASHTO)  LRFD Bridge Design Specif cations.   
   • Chapters on yield line and strip methods for slabs are moved to the 

McGraw-Hill Education Website (www.mhhe.com/darwin15e).    

 A strength of the text is the analysis chapter, which includes load combinations 

for use in design, a description of envelope curves for moment and shear, guidelines 

for proportioning members under both gravity and lateral loads, and procedures for 

developing preliminary designs of reinforced concrete structures. The chapter also 

includes the ACI moment and shear coefficients. 

 Present-day design is performed using computer programs, either general-purpose 

commercially available software or individual programs written for special needs. Proce-

dures given throughout the book guide the student and engineer through the increasingly 

complex methodology of design, with the emphasis on understanding the design process. 

Once mastered, these procedures are easily converted into flow charts to aid in preparing 

design aids or to validate commercial computer program output. 

 The text is suitable for either a one or two-semester course in the design of con-

crete structures. If the curriculum permits only a single course, probably taught in the 

fourth undergraduate year, the following will provide a good basis: the introduction 

and treatment of materials found in Chapters 1 through 3; the material on flexure, 

shear, and anchorage in Chapters 4, 5, and 6; Chapter 7 on serviceability; Chapter 9 

on short columns; the introduction to one-way slabs found in Chapter 12; and footings 

in Chapter 15. Time may or may not permit classroom coverage of frame analysis or 

building systems, Chapters 11 and 19, but these could well be assigned as independent 

reading, concurrent with the earlier work of the course. In the authors’ experience, 

such complementary outside reading tends to enhance student motivation. 

 The text is more than adequate for a second course, most likely taught in the 

senior year or the first year of graduate study. The authors have found that this is 

an excellent opportunity to provide students with a more general understanding of 

reinforced concrete structural design, often beginning with analysis and building 

systems, Chapters 11 and 19, followed by the increasingly important behavioral 

topics of torsion, Chapter 8; slender columns, Chapter 10; the  strut-and-tie method 

of Chapter 17; and the design and detailing of joints,  Chapter 18. It should also 

offer an opportunity for a much-expanded study of slabs,  including Chapter 13, 

plus the methods for slab analysis and design based on plasticity theory found 

in Chapters 23 and 24 (available online), yield line analysis and the strip method 

of design. Other topics appropriate to a second course include retaining walls, 

Chapter  16, and the introduction to earthquake-resistant design in  Chapter  20. 

Prestressed concrete in Chapter 22 is sufficiently important to justify a separate 

course in conjunction with anchoring to concrete, Chapter  21, and strut-and-tie 

methods, Chapter 17. If time constraints do not permit this, Chapter 22 provides 

an introduction and can be used as the text for a one-credit-hour course. 

 At the end of each chapter, the user will find extensive reference lists, which pro-

vide an entry into the literature for those wishing to increase their knowledge through 

individual study. For professors, the instructor’s solution manual is available online at 

the McGraw-Hill Education Website. 

 A word must be said about units. In the United States customary inch-pound 

units remain prominent. Accordingly, inch-pound units are used throughout the text, 

although some graphs and basic data in Chapter 2 are given in dual units. Appendix B 
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xiv    Preface

gives the SI equivalents of inch-pound units. An SI version of the ACI Building Code 

is available. 

 A brief historical note may be of interest. This book is the fifteenth edition of a 

textbook originated in 1923 by Leonard C. Urquhart and Charles E. O’Rourke, both 

professors of structural engineering at Cornell University. Over its remarkable 92-year 

history, new editions have kept pace with research, improved materials, and new 

methods of analysis and design. The second, third, and fourth editions firmly estab-

lished the work as a leading text for elementary courses in the subject area. Professor 

George Winter, also of Cornell, collaborated with Urquhart in preparing the fifth and 

sixth editions. Winter and Professor Arthur H. Nilson were responsible for the sev-

enth, eighth, and ninth editions, which substantially expanded both the scope and the 

depth of the presentation. The tenth, eleventh, and twelfth editions were prepared by 

Professor Nilson subsequent to Professor Winter’s passing in 1982. 

 Professor Nilson was joined by Professor David Darwin of the University of 

Kansas and by Professor Charles Dolan of the University of Wyoming beginning with 

the thirteenth edition. All three have been deeply involved in research and teaching in 

the fields of reinforced and prestressed concrete, as well as professional Code-writing 

committees, and have spent significant time in professional practice, invaluable in 

developing the perspective and structural judgment that sets this book apart. 

 Special thanks are due to McGraw-Hill Education project team, notably,  Lorraine 

Buczek, Developmental Editor, Melissa Leick, Project Manager, Thomas Scaife, Brand 

Manager, and Ramya Thirumavalavan, Full Service Project Manager. 

 We gladly acknowledge our indebtedness to the original authors. Although it is 

safe to say that neither Urquhart or O’Rourke would recognize much of the detail and 

that Winter would be impressed by the many changes, the approach to the subject and 

the educational philosophy that did so much to account for the success of the early 

 editions would be familiar. With the passing of Arthur Nilson in the spring of 2014, 

we have lost a long-standing mentor, colleague, and friend. 

    David     Darwin   
   Charles W.     Dolan       
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1

   Introduction 

    1.1 CONCRETE, REINFORCED CONCRETE, 
AND PRESTRESSED CONCRETE 

   Concrete  is a stonelike material obtained by permitting a carefully proportioned 

 mixture of cement, sand and gravel or other coarse aggregate, and water to harden in 

forms of the shape and dimensions of the desired structure. The bulk of the material 

consists of fine and coarse aggregate. Cement and water interact chemically to bind 

the aggregate particles into a solid mass. Additional water, over and above that needed 

for this chemical reaction, is necessary to give the mixture the workability that enables 

it to fill the forms and surround the embedded reinforcing steel prior to hardening. 

Concretes with a wide range of properties can be obtained by appropriate adjustment 

of the proportions of the constituent materials. Special cements (such as high early 

strength cements), special aggregates (such as various lightweight or heavyweight 

aggregates), admixtures (such as plasticizers, air-entraining agents, silica fume, and 

fly ash), and special curing methods (such as steam-curing) permit an even wider vari-

ety of properties to be obtained. 

 These properties depend to a very substantial degree on the proportions of the 

mixture, on the thoroughness with which the various constituents are intermixed, and 

on the conditions of humidity and temperature in which the mixture is maintained from 

the moment it is placed in the forms until it is fully hardened. The process of control-

ling conditions after placement is known as  curing.  To protect against the unintentional 

production of substandard concrete, a high degree of skillful control and supervision is 

necessary throughout the process, from the proportioning by weight of the individual 

components, through mixing and placing, until the completion of curing. 

 The factors that make concrete a universal building material are so pronounced 

that it has been used, in more primitive kinds and ways than at present, for  thousands 

of years, starting with lime mortars from 12,000 to 6000  BCE  in Crete, Cyprus, 

Greece, and the Middle East. The facility with which, while plastic, it can be deposited 

and made to fill forms or molds of almost any practical shape is one of these factors. 

Its high fire and weather resistance is an evident advantage. Most of the constituent 

materials, with the exception of cement and additives, are usually available at low cost 

locally or at small distances from the construction site. Its compressive strength, like 

that of natural stones, is high, which makes it suitable for members primarily subject 

to compression, such as columns and arches. On the other hand, again as in natural 

stones, it is a relatively brittle material whose tensile strength is low compared with its 

compressive strength. This prevents its economical use as the sole building material 

in structural members that are subject to tension either entirely (such as in tie-rods) or 

over part of their cross sections (such as in beams or other flexural members). 
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2    DESIGN OF CONCRETE STRUCTURES Chapter 1

 To offset this limitation, it was found possible, in the second half of the  nineteenth 

century, to use steel with its high tensile strength to reinforce concrete, chiefly in those 

places where its low tensile strength would limit the carrying capacity of the  member. 

The reinforcement, usually round steel rods with appropriate  surface deformations 

to provide interlocking, is placed in the forms in advance of the concrete. When 

 completely surrounded by the hardened concrete mass, it forms an integral part of the 

member. The resulting combination of two materials, known as  reinforced  concrete,  

combines many of the advantages of each: the relatively low cost, good weather and 

fire resistance, good compressive strength, and excellent formability of concrete and 

the high tensile strength and much greater ductility and toughness of steel. It is this 

combination that allows the almost unlimited range of uses and possibilities of rein-

forced concrete in the construction of buildings, bridges, dams, tanks, reservoirs, and 

a host of other structures. 

 It is possible to produce steels, at relatively low cost, whose yield strength is 3 to 

4 times and more that of ordinary reinforcing steels. Likewise, it is possible to produce 

concrete 4 to 5 times as strong in compression as the more ordinary concretes. These 

high-strength materials offer many advantages, including smaller member cross sec-

tions, reduced dead load, and longer spans. However, there are limits to the strengths 

of the constituent materials beyond which certain problems arise. To be sure, the 

strength of such a member would increase roughly in proportion to those of the mate-

rials. However, the high strains that result from the high stresses that would otherwise 

be permissible would lead to large deformations and consequently large deflections of 

such members under ordinary loading conditions. Equally important, the large strains 

in such high-strength reinforcing steel would induce large cracks in the surrounding 

low tensile strength concrete, cracks that not only would be unsightly but also could 

significantly reduce the durability of the structure. This limits the useful yield strength 

of high-strength reinforcing steel to 100 ksi  †   according to many codes and specifica-

tions; 60 ksi steel is most commonly used. 

 Construction known as  prestressed concrete,  however, does use steels and con-

cretes of very high strength in combination. The steel, in the form of wires, strands, 

or bars, is embedded in the concrete under high tension that is held in equilibrium by 

compressive stresses in the concrete after hardening. Because of this precompression, 

the concrete in a flexural member will crack on the tension side at a much larger load 

than when not so precompressed. Prestressing greatly reduces both the deflections and 

the tensile cracks at ordinary loads in such structures and thereby enables these high-

strength materials to be used effectively. Prestressed concrete has extended, to a very 

significant extent, the range of spans of structural concrete and the types of structures 

for which it is suited.   

   1.2 STRUCTURAL FORMS 

  The figures that follow show some of the principal structural forms of reinforced con-

crete. Pertinent design methods for many of them are discussed later in this volume. 

 Floor support systems for buildings include the monolithic slab-and-beam floor 

shown in  Fig. 1.1 , the one-way joist system of  Fig. 1.2 , and the flat plate floor, without 

beams or girders, shown in  Fig. 1.3 . The flat slab floor of  Fig. 1.4 , frequently used for 

more heavily loaded buildings such as warehouses, is similar to the flat plate floor, 

but makes use of increased slab thickness in the vicinity of the columns, as well as 

  † Abbreviation for kips per square inch, or thousands of pounds per square inch. 
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INTRODUCTION   3

flared column tops, to reduce stresses and increase strength in the support region. The 

choice among these and other systems for floors and roofs depends upon functional 

requirements, loads, spans, and permissible member depths, as well as on cost and 

esthetic factors.     

 Where long clear spans are required for roofs, concrete shells permit use of 

extremely thin surfaces, often thinner, relatively, than an eggshell. The folded plate roof 

of  Fig. 1.5  is simple to form because it is composed of flat surfaces; such roofs have 

been employed for spans of 200 ft and more. The cylindrical shell of  Fig. 1.6  is also 

relatively easy to form because it has only a single curvature; it is similar to the folded 

plate in its structural behavior and range of spans and loads. Shells of this type were 

once quite popular in the United States and remain popular in other parts of the world.   

 Doubly curved shell surfaces may be generated by simple mathematical curves 

such as circular arcs, parabolas, and hyperbolas, or they may be composed of com-

plex combinations of shapes. The hyperbolic paraboloid shape, defined by a concave 

downward parabola moving along a concave upward parabolic path, has been widely 

 FIGURE 1.1  
 One-way reinforced concrete 

floor slab with monolithic 

supporting beams. ( Portland 
Cement Association. ) 

 FIGURE 1.2  
 One-way joist floor system, 

with closely spaced ribs 

supported by monolithic 

concrete beams; transverse 

ribs provide for lateral 

distribution of localized 

loads. ( Portland Cement 
Association. ) 
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4    DESIGN OF CONCRETE STRUCTURES Chapter 1

 FIGURE 1.3  
 Flat plate floor slab, carried 

directly by columns without 

beams or girders. ( Portland 
Cement Association. ) 

 FIGURE 1.4  
 Flat slab floor, without 

beams but with slab 

thickness increased at the 

columns and with flared 

column tops to provide 

for local concentration of 

forces. ( Portland Cement 
Association. ) 

used. It has the interesting property that the doubly curved surface contains two sys-

tems of straight-line generators, permitting straight-form lumber to be used. The com-

plex dome of  Fig.  1.7 , which provides shelter for performing arts events, consists 

essentially of a circular dome but includes monolithic, upwardly curved edge surfaces 

to provide stiffening and strengthening in that critical region.  
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INTRODUCTION   5

 FIGURE 1.5  
 Folded plate roof of 125 ft 

span that, in addition to 

carrying ordinary roof 

loads, carries the second 

floor as well using a system 

of cable hangers; the 

ground floor is kept free 

of columns. (Photograph by 
Arthur H. Nilson.) 

 FIGURE 1.6 
 Cylindrical shell roof 

providing column-free 

interior space. (Photograph by 
Arthur H. Nilson.) 

 Bridge design has provided the opportunity for some of the most challenging 

and creative applications of structural engineering. The award-winning Napoleon 

Bonaparte Broward Bridge, shown in  Fig.  1.8 , is a six-lane, cable-stayed structure 

that spans St. John’s River at Dame Point, Jacksonville, Florida. It has a 1300 ft 
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6    DESIGN OF CONCRETE STRUCTURES Chapter 1

center  span.  Figure 1.9  shows the Bennett Bay Centennial Bridge, a four-span con-

tinuous,  segmentally cast-in-place box girder structure. Special attention was given to 

 esthetics in this award-winning design. The spectacular Natchez Trace Parkway Bridge 

in  Fig. 1.10 , a two-span arch structure using hollow precast concrete elements, carries 

a two-lane highway 155 ft above the valley floor. This structure has won many honors, 

 FIGURE 1.8  
 Napoleon Bonaparte Broward 

Bridge, with a 1300 ft 

center span at Dame Point, 

Jacksonville, Florida. 

( HNTB Corporation, Kansas 
City, Missouri. ) 

 FIGURE 1.7 
 Spherical shell in Lausanne, 

Switzerland. Upwardly 

curved edges provide 

stiffening for the central 

dome. (Photograph by 
Arthur H. Nilson.) 
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INTRODUCTION   7

 FIGURE 1.9  
 Bennett Bay Centennial 

Bridge, Coeur d’Alene, 

Idaho, a four-span continuous 

concrete box girder structure 

of length 1730 ft. ( HNTB 
Corporation, Kansas City, 
Missouri. ) 

 FIGURE 1.10 
 Natchez Trace Parkway 

Bridge near Franklin, 

Tennessee, an award-winning 

two-span concrete arch 

structure rising 155 ft above 

the valley floor. ( Designed by 
Figg Engineering Group. ) 
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8    DESIGN OF CONCRETE STRUCTURES Chapter 1

including awards from the American Society of Civil Engineers and the National 

Endowment for the Arts.    

 The durability and sustainability of concrete structures is evident in the 10,000 seat 

multipurpose Dakota Dome shown in  Fig. 1.11 . Originally constructed in 1979 as an 

inflatable roof dome, the entire concrete structure was retained and a steel roof installed 

in 2001.  

 Concrete structures may be designed to provide a wide array of surface textures, 

colors, and structural forms.  Figure 1.12  shows a precast concrete building containing 

both color changes and architectural finishes.  

 The forms shown in  Figs. 1.1  to  1.12  hardly constitute a complete inventory 

but are illustrative of the shapes appropriate to the properties of reinforced or pre-

stressed concrete. They illustrate the adaptability of the material to a great variety 

of one-dimensional (beams, girders, columns), two-dimensional (slabs, arches, rigid 

frames), and three-dimensional (shells, tanks) structures and structural components. 

This variability allows the shape of the structure to be adapted to its function in an eco-

nomical manner, and furnishes the architect and design engineer with a wide variety of 

possibilities for esthetically satisfying structural solutions.   

   1.3 LOADS 

  Loads that act on structures can be divided into three broad categories: dead loads, live 

loads, and environmental loads. 

  Dead loads  are those that are constant in magnitude and fixed in location 

throughout the lifetime of the structure. Usually the major part of the dead load is 

the weight of the structure itself. This can be calculated with good accuracy from the 

design configuration, dimensions of the structure, and density of the material. For 

buildings, floor fill, finish floors, and plastered ceilings are usually included as dead 

loads, and an allowance is made for suspended loads such as piping and lighting 

 fixtures. For bridges, dead loads may include wearing surfaces, sidewalks, and curbs, 

and an allowance is made for piping and other suspended loads. 

  Live loads  consist chiefly of occupancy loads in buildings and traffic loads on 

bridges. They may be either fully or partially in place or not present at all, and may 

also change in location. Their magnitude and distribution at any given time are uncer-

tain, and even their maximum intensities throughout the lifetime of the structure are 

not known with precision. The minimum live loads for which the floors and roof of 

 FIGURE 1.11  
 The Dakota Dome is a 10,000 

seat multipurpose stadium 

with a concrete frame and 

ring girder to support the 

roof. ( Photograph by Charles 
W. Dolan. ) 
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INTRODUCTION   9

 FIGURE 1.12  
 Concrete structures 

can be produced in a 

wide range of colors, 

finishes, and architectural 

detailing. ( Courtesy of Rocky 
Mountain Prestress, LLC. ) 

a building should be designed are usually specified in the building code that governs 

at the site of construction. Representative values of minimum live loads to be used 

in a wide variety of buildings are found in  Minimum Design Loads for Buildings and 
Other Structures  ( Ref. 1.1 ), a portion of which is reprinted in  Table 1.1 . The table 

gives uniformly distributed live loads for various types of occupancies; these include 

impact provisions where necessary. These loads are expected maxima and consider-

ably exceed average values.  

 In addition to these uniformly distributed loads, it is recommended that, as an 

alternative to the uniform load, floors be designed to support safely certain concen-

trated loads if these produce a greater stress. For example, according to  Ref. 1.1 , office 

floors are to be designed to carry a load of 2000 lb distributed over an area 2.5 ft 

square (6.25 ft 2 ), to allow for the weight of a safe or other heavy equipment, and stair 

treads must safely support a 300 lb load applied on the center of the tread. Certain 

reductions are often permitted in live loads for members supporting large areas with 

the understanding that it is unlikely that the entire area would be fully loaded at one 

time (Refs.  1.1  and  1.2 ). 

 Tabulated live loads cannot always be used. The type of occupancy should be 

considered and the probable loads computed as accurately as possible. Warehouses for 

heavy storage may be designed for loads as high as 500 psf or more; unusually heavy 

operations in manufacturing buildings may require an increase in the 250 psf value 

specified in  Table 1.1 ; special provisions must be made for all definitely located heavy 

concentrated loads. 
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